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Abstract

A wave propagation approach is presented for free vibration analysis of circular cylindrical shell, based on Flügge

classical thin shell theory. The validity and accuracy of the wave approach is studied in detail, including aspects of

frequencies, vibration shapes and wavenumbers. An exact solution for free vibration of circular cylindrical shell is also

given in the present analysis. For the comparisons of these two approaches for natural frequencies, vibration shape of a

shell are discussed for shear diaphragm–shear diaphragm (SD–SD), clamped–clamped (C–C) and clamped–shear

diaphragm (C–SD) boundary conditions. The results show that wave propagation has high accuracy for long shell and

SD–SD boundary conditions.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Of all existing shell models, the circular cylindrical shell is perhaps the most widely studied. It has
applications in chimney design, pipe flow and aircraft fuselages to name a few. Many shell theories have been
developed over the last century, as well as methods to solve their governing equations. A comprehensive
review and comparison of shell theories have been carried out by Leissa [1]. The free vibration and wave
problems of thin circular cylindrical shells have been of great interest to many structural engineers in recent
years. They used so many approaches in their research. Fuller [2] studied the effects of wall discontinuities on
the propagation of flexural waves in cylindrical shells. The transmission of flexural-type wave through various
discontinuities in the walls of cylindrical shells is investigated. Theoretical curves of transmission loss are
obtained for different circumferential wavenumbers and wave types, as functions of frequency. The dispersion
behavior and energy distributions for free waves in thin-walled cylindrical shells filled with fluid are studied by
Fuller and Fahy [3]. Fuller [4] has investigated the input mobility of an infinite circular cylindrical shell. Wang
and Lai [5] introduced the wave propagation approach to study the vibration behavior of finite-length circular
cylindrical shells based on Love’s shell theory, and an approximate method for calculating the natural
frequencies of finite-length circular cylindrical shells with different boundary conditions without simplifying
the exact equations of motion. Those approximate solutions are compared with numerical results obtained
using finite-elements code ANSYS and with experimental data. Zhang et al. [6] studied the vibration
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclatures

ai coefficients of characteristic equations
bi coefficients of characteristic frequency

equations
C, A frequency matrix of wave propagation

and exact solution, respectively
E, n Young’s modulus and Poisson’s ratio
h, R, L thickness, radius and length of shell
km wavenumber in the axial direction (wave

propagation)
n circumferential wavenumber

u,v,w axial, circumferential and radial displa-
cement

x, y, z axial, circumferential and radial coordi-
nates

t time
a, b modal shape coefficients
l wavenumber in axial direction (exact

solution)
o radial frequency of shell
r mass density
O nondimensional frequency parameter
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characteristics of thin cylindrical shells using wave propagation. They calculated the frequencies of a longer
shell (L/R ¼ 20), and compared the results by the wave propagation method and numerical FEM (MSC/
NASTRAN). Zhang et al. have extended this approach for coupled vibration of fluid-filled shells [7],
submerged shells [8] and cross-ply laminated composite shells [9]. Xu et al. studied the power flow propagating
in fluid-filled shells [9–13].

As we all know, the accuracy of FEM results is dependent on the number of mesh elements and nodes. The
FEM results should be validated itself first. This procedure is very tedious, especially for parametric analyses,
for example, if we need to obtain the natural frequencies of shell for different thickness, length–radius ratios
and use results are referenced. One kind of meshing may be fine for one length–radius ratio, but may introduce
large errors for another ratio. The comparison between wave propagation and exact solution should be made,
and then the validity and accuracy of the wave approach could be better evaluated.

In the literature, methods often used to treat cylindrical shells with different boundary conditions include
the state-space concept approach [24] and a numerical approach in which one first assumes an unknown axial
mode function [15,16]. In all these methods, the natural frequency is first assumed and an iterative procedure is
adopted to ensure that the assumed frequency produces a zero of the appropriate characteristic determinant
for the particular set of boundary conditions. These methods are therefore highly iterative and
computationally intensive. But they have high accuracy. In this paper a wave propagation approach is
presented for free vibration analysis of circular cylindrical shell, based on Flügge, classical thin shell theory.
The present method of treating cylindrical shells with different boundary conditions by using beam functions
as the axial modal functions is a much more straightforward approach. Being a non-iterative method, it is
relatively less computationally intensive and it also gives reasonably accurate natural frequencies, at least for
simple modal shapes. This approach is also used by other researchers [5,6]; however, the accuracy of this
approach is not obtained yet. The validity and accuracy of the wave approach is studied in detail in this
analysis, including aspects of frequencies, vibration shapes and wavenumbers. An exact solution for free
vibration of circular cylindrical shell is also given simultaneously in this paper. The comparisons of these two
approaches for natural frequencies, vibration shape of a shell are discussed for different shells with shear
diaphragm–shear diaphragm (SD–SD), clamped–clamped (C–C) and clamped–shear diaphragm (C–SD)
boundary conditions. The results show that wave propagation has high accuracy for long shell and SD–SD
boundary conditions.

In this paper, a typical dispersion plot is also obtained using the wave propagation approach. From the
dispersion plot, one can study more characteristics of the shell itself in view of the wave propagation method.
2. Equations of motion of shell

The cylindrical shell under consideration has a constant thickness h, radius R and length L. The reference
surface of the shell is taken at its middle surface where an orthogonal coordinate system (x, y, z) is fixed. The x
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coordinate is taken in the axial direction of the shell, where y and z are, respectively, in the circumferential and
radial directions of the shell as shown in Fig. 1. The displacements of the shell are defined by u, v and w in the
x, y and z directions, respectively. The circumferential modal shapes of shell are shown in this figure (refer to
the list of nomenclatures).

The governing differential equations of cylindrical shells based on Flügge [14] can be expressed as

L11 L12 L13

L21 L22 L23

L31 L32 L33
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>; ¼ f0g, (1)

where Lij (i; j ¼ 1; 2; 3) are the differential operators with respect to x and y. The displacements of the shell can
be expressed in the form of wave propagation as follows:

u ¼ Ume
�ikmx cosðnyÞeiot,

v ¼ V me
�ikmx sinðnyÞeiot,

w ¼W me
�ikmx cosðnyÞeiot, ð2Þ

where km and n are axial wavenumber and circumferential modal parameter, respectively, Um, Vm and Wm are,
respectively, the wave amplitudes in the x, y and z directions, o is the circular driving frequency. By
substituting Eq. (2) into Eq. (1), we obtain
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in which Cij (I ¼ 1; 2; 3) are coefficients. For the non-trivial solution, the determinant of this set of equations
must be zero, i.e.

detð½Cij �Þ ¼ 0; i; j ¼ 1; 2; 3. (4)

A characteristic equation is obtained from the expansion of Eq. (4)

f ðl;oÞ ¼ 0. (5)

Eq. (5) can be rewritten as the following polynomial function; if an initial driving frequency is given:

a8k
8
m þ a6k6

m þ a4k4
m þ a2k2

m þ a0 ¼ 0 (6)
h L

x 
z θ

            O

R 

n = 1 n = 2 n = 3

Fig. 1. Coordinate system and circumferential modal shapes.
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ai (i ¼ 0; 2; 4; 6; 8) are real coefficients. This is an equation about km of order 8. The admissible solutions for a
quadric equation with real coefficients consist of combinations or four of �Lm, �igm and �ðc� ifÞm. With
the first two types of root, the real and purely imaginary wavenumbers, one obtains propagating wave and an
evanescent near field, respectively.

In order to calculate the natural frequencies, it is only necessary to determine the wavenumber km in the
axial direction. Unfortunately, as km strongly depends on the boundary conditions, one has to solve the
equations of motion with appropriate boundary conditions in order to obtain km. However, if one is only
interested in flexural vibration, one may use the beam function to determine the modal wavenumbers and
mode shapes of cylindrical shells in the axial direction by assuming the flexural mode shapes of cylindrical
shells in the axial direction to be of the same form as that of a transverse vibration beam of the same boundary
conditions. The key procedure in wave propagation for free vibration analysis of shell is choosing the right
shell theory and the right wavenumber in the corresponding beam. After a wavenumber is selected for a given
boundary condition, the characteristic equation of the shell becomes

o6 þ b4o4 þ b2o2 þ b0 ¼ 0, (7)

where bi (i ¼ 0; 2; 4) are coefficients of Eq. (7). This equation governs the characteristics of wave propagation
in the shell. There are three roots in this equation, in which the lowest of these three roots represent the
flexural vibration; the other two are in-plane vibrations respectively.

The accuracy of wave propagation in free vibration analysis of shell depends on beam’s wavenumber and
different boundary conditions on each end of the shell. Many researchers have studied the effects of boundary
conditions on vibrations of circular cylindrical shells [15–20]. In order to evaluate the validity and accuracy of
wave propagation, an exact solution for circular cylindrical shell with arbitrary boundary conditions is also
obtained in the present study. The displacements of shell can be expressed as

u ¼ U0e
lx cos ny cos ot,

v ¼ V0e
lx sin ny cos ot,

w ¼W 0e
lx cos ny cos ot. ð8Þ

A characteristic equation about wavenumber l of order 8 can be derived following the similar procedure
described above. For the usual range of shell parameters and nX1, the eight roots of Eq. (8) have the form

l ¼ �l1; �il2; �ðl3 � il4Þ, (9)

where li (i ¼ 124) are real, positive numbers. The modal coefficients introduced as

ai ¼
U0i

W 0i

; bi ¼
V 0i

W 0i

; i ¼ 1; 2; . . . ; 8 (10)

These coefficients are calculated for these eight roots. Then, the displacements of shell can be rewritten as
summation of these eight roots and corresponding modal coefficients. The characteristic matrix can be
obtained after different boundary conditions having included [15],

½A�8�8fwig ¼ f0g; i ¼ 1; 2; . . . ; 8. (11)

Expansion of the determinant of the above equation provides the system characteristic equation. Forsberg
[15] and Warburton [16] presented different solving methods for this equation.

Three different boundary conditions of the circular cylindrical shell are studied in the present two
approaches: they are shear SD–SD, C–C and C–SD. The wavenumber for wave propagation and boundary
conditions of shell are listed in Table 1.

Nondimensional frequency parameter is defined as follows:

O2 ¼
rð1� n2ÞR2

E
o2, (12)

where E is Young’s modulus of elasticity, n is the Possion ratio and r is the density.
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Table 1

Wavenumber and boundary conditions

Boundary conditions of shell Wavenumber Displacement and force

Shear diaphragm–shear diaphragm (SD–SD) kmL ¼ mp v ¼ w ¼ Nx ¼Mx ¼ 0; x ¼ 0;L

Clamped–clamped (C–C) kmL ¼ ð2mþ 1Þp=2
u ¼ v ¼ w ¼

qw

qx
¼ 0; x ¼ 0;L

Clamped–shear diaphragm (C–SD) kmL ¼ ð4mþ 1Þp=4
u ¼ v ¼ w ¼

qw

qx
¼ 0; x ¼ 0

v ¼ w ¼ Nx ¼Mx ¼ 0; x ¼ L
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3. Numerical results and discussion

A typical dispersion plot is given in Fig. 2a, b for a circular cylindrical shell with thickness ratio h/R ¼ 0.01
and a circumferential modal number n ¼ 3. Fig. 2b zooms in on the behavior of shell near the first cut-on
frequency band. Only four roots are given in this plot for clarity.

When the driving frequency is very slow, Eq. (5) has eight conjugate roots. These eight roots can be divided
into two groups. The two roots that have lower modulus firstly merge and transform into two purely
imaginary ones (Point B1, Fig. 2b). Then one of these purely imaginary roots continues to grow and
transforms to a purely real one as it crosses the axis, where the second root decreases. This ‘two-phase’
transformation occurs in a very narrow frequency band. With further growth in the driving frequency, two
complex conjugate roots transform to two purely imaginary ones (Point B2, Fig. 2a). Thus, in the frequency
range from approximately O ¼ 1:08 to 1:77 there exist one propagation wave and three evanescent waves. The
second propagation wave is generated in a different manner, at O ¼ 1.78 a purely imaginary wavenumber
become purely real. Even at this high frequency the wavelength of the propagating waves are much larger than
the thickness of the shell so the thin shell theory is entirely applicable.

It should be noted that, the dispersion plot is continuous. With wave approach, discrete wavenumber is
given according to various different boundary conditions. The corresponding resonant frequencies can be
obtained from Eq. (5).

In order to evaluate the accuracy of the wave propagation, the results obtained here are compared with
those from other researchers. Tables 2 and 3 are provided for 3 boundary conditions, respectively. In these
tables, m is the half number of circumferential waves of the vibration mode. Through comparison we can
know that wave propagation is convenient and effective.

Two examples for comparison of frequency for a clamped–clamped cylindrical shell between FEM and
wave propagation method are studied. The results are listed in Tables 4 and 5.

For the C–C boundary condition, the results from FEM are slightly lower than that of the wave
propagation approach. However, the agreement for the lowest frequency is excellent.

In order to study the accuracy of wave propagation in detail, the results from wave propagation are
compared with those from exact solution. A relative error parameter is defined as follows:

ErrorP ¼
Pwave � Pclassical

Pclassical
� 100%, (13)

which P represents frequency, modal coefficients and wavenumbers. Subscript ‘wave’ and ‘classical’ represent
the wave propagation method and the classical exact method, respectively.

Frequencies comparisons are given in Figs. 3–5. The relative error of wave propagation is smaller when the
shell is longer. For given shell parameters, the relative error of SD–SD is the lowest among these three
boundary conditions. A comparison for high vibration shape, m ¼ 2, is given in Fig. 5. The frequencies error
becomes small when n increases.
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Fig. 2. (a) Dispersion plot for a circular cylindrical shell h/R ¼ 0.01, n ¼ 3. (b) A zoom view for lower frequency.
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For short shells, the differences of frequencies between results obtained by the wave propagation method
and the classical method are substantial. This is because the coupling between the circumferential and axial
modes is ignored by using the beam function. The effects of this coupling are less important for long thin shells
and for higher order modes such as shown in Fig. 4. The coupling effects between the circumferential and axial
modes under clamped-shear diaphragm (C–SD) are less significant due to lack of constraints at one end. Thus,
the differences of the axial mode coefficient of long shell for higher order are much higher as shown in Fig. 7.

The relative errors for shape coefficients are shown in Figs. 6–10. The errors are small when n is small. When
n increases, the errors of axial shape become larger. This phenomenon is quite different from those in
frequencies comparison. From these plots, we can also know that the error of axial displacement is larger than
that of circumferential. Axial restraint has more effects on frequencies and shape coefficients of the shell. The
more the restraints, the more the errors.

The errors of SD–SD are very small and can be neglected.
As can be seen from Eq. (5), the wavenumber will vary for different circumferential number n. But the

wavenumber km is assumed as a constant number during the wave propagation approach for given boundary
conditions. This assumption will generate error certainly. In fact, beam is a one-dimensional structure.
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Table 3

Comparison of values of the frequency parameter for O for a shell m ¼ 1, L/R ¼ 20, h/R ¼ 0.01, n ¼ 0.3 with C–C and C–SD boundary

conditions

n O

C–C C–SD

Zhang [6] Present Zhang [6] Present

1 0.034879 0.034879 0.024721 0.024722

2 0.014052 0.014052 0.011281 0.011281

3 0.022725 0.022726 0.022335 0.022335

4 0.042271 0.042272 0.042166 0.042166

5 0.068116 0.068116 0.068054 0.068055

6 0.099823 0.099823 0.099771 0.099772

7 0.137328 0.137329 0.137279 0.137280

8 0.180617 0.180618 0.180569 0.180569

9 0.229684 0.229684 0.229636 0.229636

10 0.284526 0.284527 0.284478 0.284478

Table 4

Comparison of values of the frequency (Hz) for a shell L ¼ 20m, R ¼ 1m, h ¼ 0.01m, mass density ¼ 7850 kg/m3, E ¼ 2.1� 1011N/m2,

v ¼ 0.3, C–C boundary conditions

Order Modal shape (m,n) FEM Zhang [6] Wave propagation

1 1,2 12.25 12.13

2 1,3 19.64 19.61

3 2,3 23.18 23.28

4 2,2 27.69 28.06

5 1,1 – 30.09

6 3,3 31.6 31.97

7 1,4 36.7 36.48

8 2,4 37.55 37.38

9 3,4 39.87 39.77

Table 2

Comparison of values of the frequency parameter for O� h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð1� vÞ

p �
ðpRÞ for a SD–SD shell m ¼ 1, h/R ¼ 0.06, n ¼ 0.3

mpR=L n O� h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð1� vÞ

p .
ðpRÞ

Flügge [21] Mirsky [22] Bhimaraddi [21] Lam and Loy [23] Present

0.5p 1 0.01853 0.01853 0.01853 0.01853 0.01853

2 0.01090 0.01090 0.01090 0.01089 0.01091

3 0.00831 0.00829 0.00829 0.00828 0.00831

4 0.01019 0.01011 0.01011 0.01018 0.01021

p 1 0.02782 0.02781 0.02781 0.02787 0.02786

2 0.02215 0.02214 0.02214 0.02217 0.02219

3 0.01823 0.01818 0.01818 0.01823 0.01827

4 0.01761 0.01748 0.01748 0.01761 0.01767

2p 1 0.03717 0.03692 0.03692 0.03748 0.03739

2 0.03644 0.03612 0.03612 0.03671 0.03666

3 0.03610 0.03566 0.03566 0.03635 0.03634

4 0.03695 0.03630 0.03632 0.03720 0.03723
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Table 5

Cylinder frequency comparison (Hz) for a shell L ¼ 0.8m, inside diameter ¼ 0.3048m, h ¼ 1.1016mm, E ¼ 64.73GPa, v ¼ 0.3285, mass

density ¼ 2700 kg/m3 with C–C boundary conditions

Wavenumber FEM [25] Present

m n

1 1 1206.835 1643.599

2 632.204 759.714

3 368.149 406.966

4 272.719 275.872

5 290.999 296.349

6 378.494 381.708

7 504.107 506.585

8 656.194 658.208

9 831.114 832.645

10 1027.733 1028.601

3 1 3423.025 3802.520

2 2136.207 2464.041

3 1397.860 1595.178

4 976.570 1083.659

5 744.515 801.741

6 648.712 679.619

7 661.399 679.018

8 753.236 764.650

9 897.792 906.315

10 1078.946 1085.851

5 1 – 4568.875

2 3384.730 3598.085

3 2490.664 2703.534

4 1861.695 2026.994

5 1442.901 1557.579

6 1181.739 1257.423

7 1048.313 1097.372

8 1023.828 1056.017

9 1088.112 1110.359

10 1219.158 1235.73
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Fig. 3. Error curve for frequency parameter L/R ¼ 20, m ¼ 1.
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Compared with beam, the wavenumber of shell should consider the effect of circumferential number.
The wavenumber of shell is exactly equal to that of a beam only in the SD–SD boundary condition. Thus, it
can be easily understood that the relative error of frequencies and the modal shape coefficients are quite small
for SD–SD boundary conditions in the above comparisons. The errors of wavenumber are also examined in
this present paper.

The comparisons for wavenumber of these two approaches are given in Fig. 11. In exact solution, the root
l2 is chosen for comparison. l2 increases when n become large, while the largest value is at n ¼ 4, then l2
decreases. Relative error of wavenumber for a longer shell is given in Fig. 12. The error is much small when
n ¼ 2 and 3. The error increases quickly when n increases. The clamped boundary condition has larger effects
on relative error.

A further inspection into the wave propagation approach is given in Fig. 13 for comparison of the beam
vibration mode (m ¼ 1, n ¼ 1) with that of a transverse vibration of beam. Fig. 13 shows a flexural wave in a
flat plate, a torsional wave in a bar and an extensional wave in a flat plate. These three wave solutions are
labeled (a), (b) and (c) respectively. The dispersion curve derived from the elementary Kirchhoff beam theory
is displayed in thick black in this plot.
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For a beam whose cross-section is a cylindrical shell tube of thickness h and mean radius R, the area A and
inertia moment of cross-section I are

A ¼ 2pRh; I ¼ pR3h 1þ
h2

4R2

� �
. (14)

The transverse vibration frequencies of a simply supported beam are

o2
beam ¼

EI

rA

mp
L

� �4
; O2

beam ¼
Ið1� v2Þ

AR2
ðKm�beamRÞ4. (15)

It can be seen from Fig. 13 that the beam curve is very close to that of the beam mode when the frequency is
very small. This means, only when the shell is very long it is applicable to use beam theory to predict the
frequency of shell.
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4. Conclusions

The wave propagation approach and classical exact solution were applied to analyze the free vibration of
circular cylindrical shell based on Flügge’s classical thin shell theory in this study. The accuracy and validity of
the wave propagation approach are studied, including comparisons for frequencies, vibration shapes and
wavenumbers with those of exact solution. Some conclusions can be obtained from analysis.

Wave propagation is an efficient method for calculating the frequency of circular cylindrical shell. The wave
propagation method has a high accuracy for a longer shell. In fact, so many researchers have used this method
for analysis of pipe line (in vacuo, fluid-filled and submerged). This method also has very high accuracy of
frequency, shape coefficient and wavenumber for SD–SD boundary conditions. In fact, the wavenumber in
this boundary is exactly equal to that of the shell. Some relative errors will be introduced for those other than
SD–SD boundary conditions.

Appendix A

A.1. Differential operators Lij

L11 ¼ R2 q2

qx2
þ ð1þ kÞ

1� n
2

q2

qy2
�

rha2

D

q2

qt2
; L12 ¼

1þ n
2

R
q2

qxqy
,

L13 ¼ �nR
q
qx
þ R3k

q2

qx3
�

1� n
2

Rk
q3

qxqy2
; L21 ¼

1þ n
2

R
q2u
qxqy

,

L22 ¼
1� n
2

R2 þ
3

2
ð1� nÞR2k

� 	
q2

qx2
þ

q2

qy2
�

rhR2

D

q2

qt2
; L23 ¼

3� n
2

R2k
q3

qx2qy
�

q
qy

,

L31 ¼ nR
q
qx
þ

1� n
2

Rk
q3

qxqy2
� R3k

q3

qx3
; L32 ¼ �

3� n
2

R2k
q3

qx2qy
þ

q
qy

,

L33 ¼ �ð1þ kÞ � R4k
q4

qx4
� 2R2k

q4

qx2qy2
� k

q4

qy4
� 2k

q2

qy2
�

rhR2

D

q2

qt2
,

D ¼
Eh

1� n2
; k ¼

h2

12R2
.

A.2. Elements of C matrix

C11 ¼ �R2k2
m þ

1
2ð1þ kÞðv� 1Þn2 þ O2; C12 ¼ �

1
2inRkmð1þ vÞ; C13 ¼ kðiR3k3

m þ
1
2in

2Rkmðv� 1Þ þ iRkmvÞ,

C21 ¼ �C12; C22 ¼
1
2
ð�2n2 þ ð1þ 3kÞR2k2

mðv� 1Þ þ 2O2Þ; C23 ¼ n� 1
2
knR2k2

mð�3þ vÞ,

C31 ¼ �C13; C32 ¼ C23; C33 ¼ �1� kð1þ n4 þ R4k4
m þ 2n2ð�1þ R2k2

mÞÞ þ O2.

A.3. The coefficients of Eq. (6)

a8 ¼
1
2
kð1� vÞðk � 1Þð1þ 3kÞR8,
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a6 ¼ �
1
4
kR6ðn2ðv� 1Þð�8þ 9k2

ðv� 1Þ þ kð�11þ 3vÞÞ þ 2ðð2þ 6kÞv2 � ð3þ kÞO2 þ vð1þ 3kÞð�2þ O2ÞÞÞ,

a4 ¼ �
1

4
R4

�2kð�4þ 6n4ðv� 1Þ þ 4vþ 3v2 � 3v3 þ ð3� 7vÞO2 � 2O4 þ n2ð6þ 9O2 � 3vð2þ O2ÞÞÞ

þk2
ð6� 6vþ 6n4ð2� 3vþ v2Þ þ n2ð6v3 þ v2ðO2 � 12Þ þ 6vð3þ 2O2Þ � 3ð4þ 3O2ÞÞÞ

þ2k3n4ð�1þ vÞv2 þ 2ðv� 1Þð�1þ v2 þ O2Þ

0
B@

1
CA,

a2 ¼ �
1

4
R2

�2kð4n6ð�1þ vÞ � 2n2ð2þ v2 þ 5O2 þ 2O4 � vð3þ O2ÞÞ þ O2ð6� 3O2 þ vð3O2 � 4ÞÞ

þn4ð8þ 2v2 þ 9O2 � vð10þ 3O2ÞÞÞ þ k2
ðn6ð7� 10vþ 3v2Þ þ 6ðv� 1ÞO2 þ n4ðv� 1Þð14þ 9O2 þ vðO2 � 10ÞÞ

�n2ðv� 1Þð7þ 9O2 þ vð�7þ 3O2ÞÞÞ þ 3k3n2ðn2 � 1Þ2ðv� 1Þ2 þ 2O2ð�3þ 2n2ðv� 1Þ þ vþ 2v2 þ ð3� vÞO2Þ

0
B@

1
CA,

a0 ¼
1
2
ðð1þ kÞðv� 1Þn2 þ 2O2Þðkð�1þ n2Þ

2
ðn2 � O2Þ þ O2ð�1� n2 þ O2ÞÞ.

A.4. The coefficients of Eq. (7)

b6 ¼ 1:0,

b4 ¼
1
2
ð�2� 2n2 � 2R2k2

m � 2kð1þ n4 þ R4k4
m þ 2n2ð�1þ R2k2

mÞÞ þ ð1þ kÞðv� 1Þn2 þ ð1þ 3kÞðv� 1ÞR2k2
mÞ,

b2 ¼
1

4

�2kn6ð�3þ kðv� 1Þ þ vÞ � n4ð2kð5þ 3R2k2
mðv� 3Þ � vÞ þ 2ðv� 1Þ þ k2

ðv� 1Þð�4þ R2k2
mð9þ vÞÞÞ

�2R2k2
m

ðv� 1Þð3þ R2k2
m þ 2vÞ þ k2

ð3ðv� 1Þ þ R4k4
mð3v� 1Þ þ kð�6þ R4k4

mðv� 3Þ þ 4vþ R2k2
mð�3þ 7vÞÞÞ

�n2
2kð�2R2k2

mð�5þ vÞ þ 3R4k4
mðv� 3Þ þ 2ðv� 2ÞÞ þ 2ð1þ 2R2k2

mÞðv� 1Þ

þk2
ð2ðv� 1Þ � 3R2k2

mð�3þ 2vþ v2Þ þ R4k4
mð�9þ 12vþ v2ÞÞ

 !
0
BB@

1
CCA

0
BBBBB@

1
CCCCCA,

b0 ¼ �
1

4
ðv� 1Þ

2R4k4
mð�1þ v2Þ � 2k

n8 þ n6ð�2þ 4R2k2
mÞ þ n4ð1þ 6R4k4

m þ 2R2k2
mð�4þ vÞÞ

þ2n2R2k2
mð2� 3R2k2

m þ 2R4k4
m � vÞ þ R4k4

mð4þ R4k4
m � 2R2k2

mv� 3v2Þ

 !

þk3R2k2
m 6R6k6

m þ 3n6 v� 1ð Þ þ 3n2 1þ 3R4k4
m


 �
v� 1ð Þ þ 2n4 3� 3vþ R2k2

mv2

 �
 �

þk2
�2n8 þ 2n4ð�1þ R2k2

mð7� 5vÞ þ 3R4k4
mðv� 2ÞÞ � 2R4k4

mð3þ 2R4k4
m � 6R2k2

mvÞ

þn6ð4þ R2k2
mð3v� 7ÞÞ þ n2R2k2

mð7ðv� 1Þ þ R4k4
mð3v� 11Þ þ 6R2k2

mð2� vþ v2ÞÞ

 !

0
BBBBBBBB@

1
CCCCCCCCA
.

A.5. Elements of A matrix

Kirchhoff radial shear force Rx ¼ Nxy � ð1=RÞMxy Kirchhoff membrane force Sx ¼ Qx þ ð1=RÞðqMxy=qyÞ.
Elements of frequency determinant are

a11 ¼ a1el1x; a12 ¼ �a1e�l1x; a13 ¼ �a2 sin l2x; a14 ¼ a2 cos l2x;

a15 ¼ el3xF 1; a16 ¼ el3xF2; a17 ¼ �e
�l3xF 3; a18 ¼ e�l3xF 4;

a21 ¼ b1e
l1x; a22 ¼ b1e

�l1x; a23 ¼ b2 cos l2x; a24 ¼ b2 sin l2x;

a25 ¼ el3xG1; a26 ¼ el3xG2; a27 ¼ e�l3xG3; a28 ¼ �e
�l3xG4;

a31 ¼ el1x; a32 ¼ e�l1x; a33 ¼ cos l2x; a34 ¼ sin l2x;

a35 ¼ el3x cos l4x; a36 ¼ el3x sin l4x; a37 ¼ e�l3x cos l4x; a38 ¼ e�l3x sin l4x;

a41 ¼ l1el1x; a42 ¼ �l1e�l1x; a43 ¼ �l2 sin l2x; a44 ¼ l2 cos l2x;

a45 ¼ el3xH1; a46 ¼ el3xH2; a47 ¼ �e
�l3xH3; a48 ¼ e�l3xH4;
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a51 ¼ el1xða1l1 þ nnb1 � nþ kl21Þ; a52 ¼ e�l1xða1l1 þ nnb1 � nþ kl21Þ;

a53 ¼ ð�a2l2 þ nnb2 � n� kl22Þ cos l2x; a54 ¼ ð�a2l2 þ nnb2 � n� kl22Þ sin l2x;

a55 ¼ el3xðl3F 1 � l4F2 þ nnG1 � n cos l4xþ kI1Þ; a56 ¼ el3xðl3F 2 þ l4F1 þ nnG2 � n sin l4xþ kI2Þ;

a57 ¼ e�l3xðl3F3 � l4F 4 þ nnG3 � n cos l4xþ kI3Þ; a58 ¼ e�l3xð�l3F 4 � l4F 3 � nnG4 � n sin l4xþ kI4Þ;

a61 ¼ el1x½þð1þ 3kÞb1l1 � na1 � 3knl1�; a62 ¼ e�l1x½�ð1þ 3kÞb1l1 þ na1 þ 3knl1�;

a63 ¼ ½�ð1þ 3kÞb2l2 þ na2 þ 3knl2� sin l2x; a64 ¼ ½þð1þ 3kÞb2l2 � na2 � 3knl2� cos l2x;

a65 ¼ el3x½�nF1 þ ð1þ 3kÞðb3H1 � b4H2Þ � 3knH1�; a66 ¼ el3x½�nF2 þ ð1þ 3kÞðb4H1 þ b3H2Þ � 3knH2�;

a67 ¼ e�l3x½nF3 þ ð1þ 3kÞðb4H4 � b3H3Þ þ 3knH3�; a68 ¼ e�l3x½�nF4 � ð1þ 3kÞð�b4H3 � b3H4Þ � 3knH4�;

a71 ¼ el1x �l31 þ ð2� nÞn2l1 � a1 l21 þ n2 1� n
2

� �
�

3� n
2

b1nl1

� 	
,

a72 ¼ e�l1x þl31 � ð2� nÞn2l1 þ a1 l21 þ n2 1� n
2

� �
þ

3� n
2

b1nl1

� 	
,

a73 ¼ �l
3
2 � ð2� nÞn2l2 þ a2 �l

2
2 þ n2 1� n

2

� �
þ

3� n
2

b2nl2

� 	
sin l2x,

a74 ¼ l32 þ ð2� nÞn2l2 þ a2 l22 � n2 1� n
2

� �
�

3� n
2

b2nl2

� 	
cos l2x,

a75 ¼ el3x �ðl23 � l24ÞH1 þ 2l3l4H2 þ ð2� nÞn2H1 � ðl
2
3 � l24ÞF1 þ 2l3l4F 2

�
�

3� n
2

nðb3H1 � b4H2Þ �
1� n
2

n2F1


,

a76 ¼ el3x �ðl23 � l24ÞH2 � 2l3l4H1 þ ð2� nÞn2H2 � ðl
2
3 � l24ÞF2 � 2l3l4F 1

�
�

3� n
2

nðb4H1 þ b3H2Þ �
1� n
2

n2F2


,

a77 ¼ e�l3x �ðl24 � l23ÞH3 � 2l3l4H4 � ð2� nÞn2H3 � ðl
2
4 � l23ÞF3 � 2l3l4F 4

�
�

3� n
2

nðb4H4 � b3H3Þ þ
1� n
2

n2F3


,

a78 ¼ e�l3x �ðl23 � l24ÞH4 � 2l3l4H3 þ ð2� nÞn2H4 � ðl
2
3 � l24ÞF4 � 2l3l4F 3

�
�

3� n
2

nðb4H3 þ b3H4Þ �
1� n
2

n2F4


,

a81 ¼ el1xðl21 þ a1l1 þ nnb1 � nn2Þ; a82 ¼ e�l1xðl21 þ a1l1 þ nnb1 � nn2Þ;

a83 ¼ ð�l
2
2 � a2l2 þ nnb2 � nn2Þ cos l2x; a84 ¼ ð�l

2
2 � a2l2 þ nnb2 � nn2Þ sin l2x;

a85 ¼ el3x½I1 � nn2 cos l4xþ l3F1 � l4F2 þ nnG1�,

a86 ¼ el3x½I2 � nn2 sin l4xþ l3F 2 þ l4F 1 þ nnG2�,

a87 ¼ e�l3x½I3 � nn2 cos l4xþ l3F3 � l4F4 þ nnG3�,

a88 ¼ e�l3x½I4 � nn2 sin l4x� l3F4 � l4F3 � nnG4�,
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where

F 1 ¼ a3 cos l4x� a4 sin l4x; F 2 ¼ a4 cos l4xþ a3 sin l4x;

F 3 ¼ a3 cos l4xþ a4 sin l4x; F 4 ¼ a4 cos l4x� a3 sin l4x;

G1 ¼ b3 cos l4x� b4 sin l4x; G2 ¼ b4 cos l4xþ b3 sin l4x;

G3 ¼ b3 cos l4xþ b4 sin l4x; G4 ¼ b4 cos l4x� b3 sin l4x;

H1 ¼ l3 cos l4x� l4 sin l4x; H2 ¼ l3 sin l4xþ l4 cos l4x;

H3 ¼ l3 cos l4xþ l4 sin l4x; H4 ¼ �l3 sin l4xþ l4 cos l4x;

I1 ¼ ðl
2
3 � l24Þ cos l4x� 2l3l4 sin l4x; I2 ¼ ðl

2
3 � l24Þ sin l4xþ 2el3xl3l4 cos l4x;

I3 ¼ ðl
2
3 � l24Þ cos l4xþ 2l3l4 sin l4x; I4 ¼ ðl

2
3 � l24Þ sin l4x� 2l3l4 cos l4x;
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